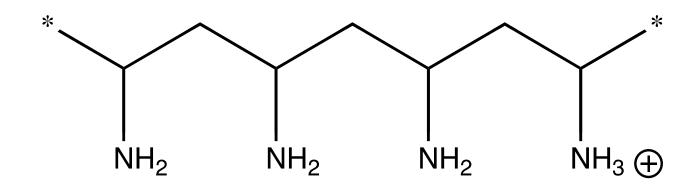
New polymers for wet-strength – an academic perspective

Robert Pelton

Interfacial Technologies Group
Department of Chemical Engineering
McMaster University
1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
E-mail: peltonrh@mcmaster.ca

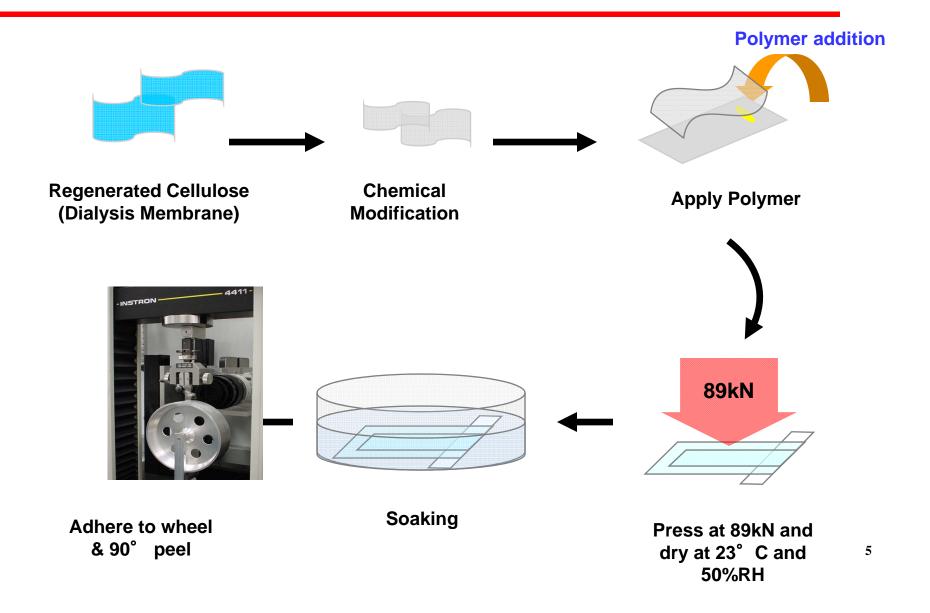
1

Acknowledgements

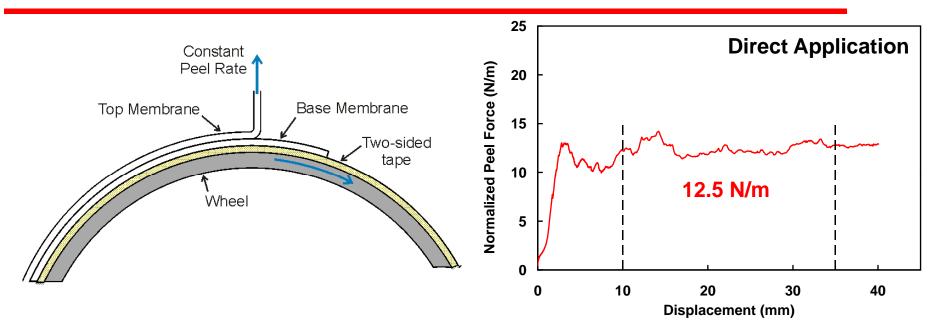


Pengchao Ren

Polyvinylamine

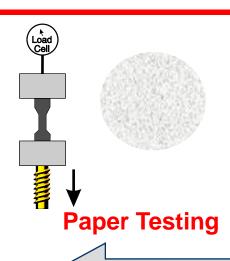


- ◆ 2000 we initiated a major project to understand the influence of PVAm on the mechanical properties of wet paper
- **♦** A problem in wet adhesion.

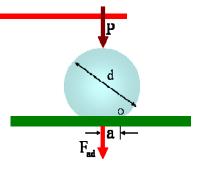

Our First Effort in Wet Strength

- ◆ Pelton, R.; Hong, J., Some properties of newsprint impregnated with polyvinylamine. *Tappi J. 2002, 1* (10), 21
 - PVAm increased newsprint wet strength
 - More amine groups (degree of hydrolysis), the better
- ♦ We needed a better wet adhesion test.

Film Delamination – A Model for Fiber-Fiber Wet Adhesion



Wet Adhesion Test – 90° Peel



- ◆ Figure: typical force vs. displacement trace
- **♦** Summarized by average normalized force
 - Force/width of top laminate N/m

How our Method Fits In

Peel Delamination

Surface Force Apparatus
Atomic Force Microscopy, JKR

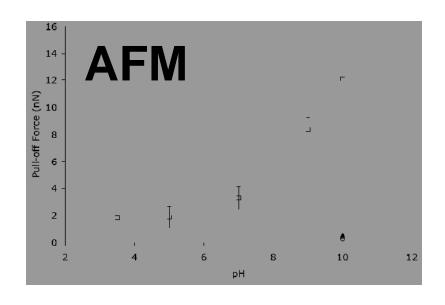
Technical (fast)

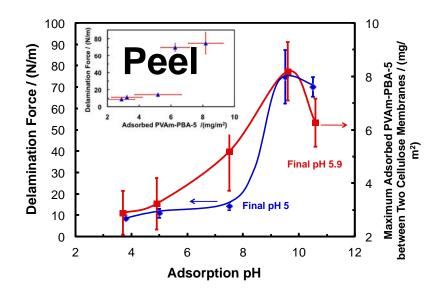
(tedious) Fundamental

Wet Paper Testing

- standard methods
- fast, large database
- relevant substrates
- too complex for fundamental interpretation

Wet Cellulose Delamination

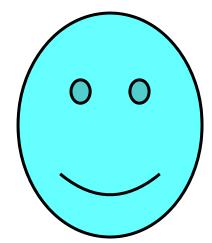

- fast, standard equipment
- widely available substrate
 - reproducible results
- a crude model for fibers
- somewhat well characterized


McLaren (1948) Kurosu & Pelton (2004)

SFA, AFM, JKR

- gives a lot of information
- requires very smooth surfaces
 - well defined physics
 - tedious

AFM and Peel Delamination Give Similar Results

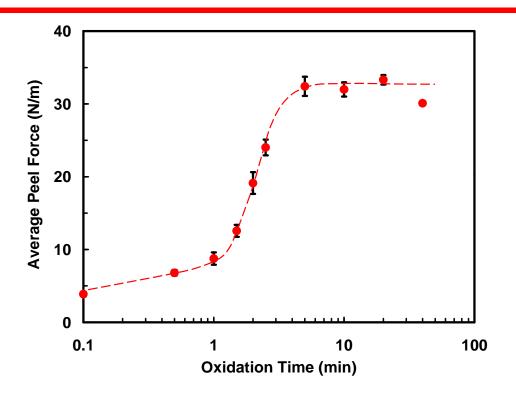


Notley, S.; Chen, W.; Pelton, R., The extraordinary adhesion of phenylboronic acid derivatives of polyvinylamine to wet cellulose a colloidal probe microscopy investigation. *Langmuir 2009, 25 (12), 689*

Chen, W.; Leung, V.; Kroener, H.; Pelton, R., Polyvinylamine-phenylboronic acid adhesion to cellulose hydrogel. *Langmuir 2009, 25 (12), 6863*

Summary – Wet Adhesion Test

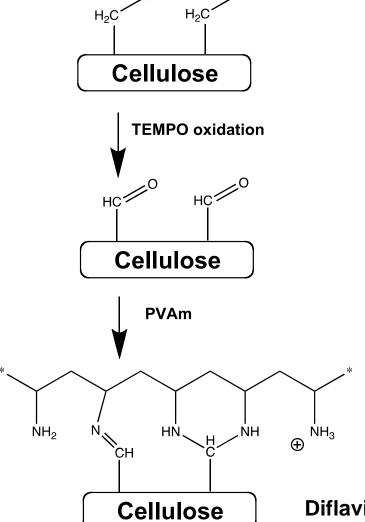
- ◆ A model for fiber-fiber bonds (joints if you are Swedish).
- ◆ Reproducible
- ◆ Can control the amount of polymer in the adhesive joint



The Bad News

♦ We we tried to measure PVAm wet adhesion with our new method – the forces were very small.

The Solution - Oxidation



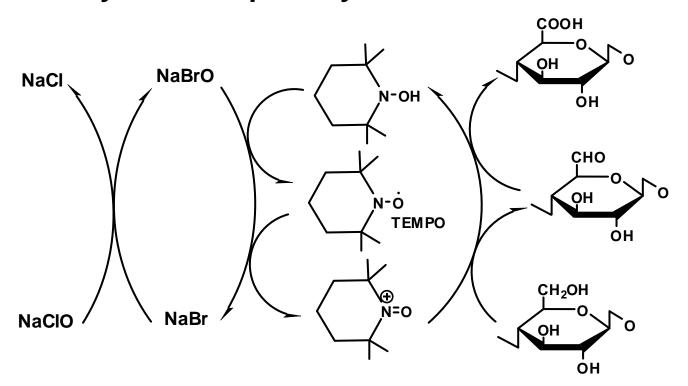
- DiFlavio applied Isogai's oxidation recipe to cellulose film
- Adhesion increases with cellulose oxidation

pH 7, 10mM NaCl, ~7.5 mg/m^2

DiFlavio, JFRC: Cambridge, UK, 2005; pp 1293-1316.

Proposed Mechanism

- TEMPO oxidation produces aldehyde/hemiacetals
- ◆ PVAm reacts to form imine and aminal covalent bonds with cellulose


Diflavio et al. Cellulose 2007, 14 (3), 257

TEMPO oxidation on cellulose

Primary oxidant: NaClO/NaBr

Catalyst: TEMPO

Selectively oxidizes primary OH – C6OH on cellulose

1 T.Saito, A.Isogai. Colloids and surfaces A: Physicochem.Eng.Aspects. 289(2006), P219

Transition State Requires Molecular Contact

Scheme 10. Proposed mechanistic adducts in alkaline (VI) and acidic conditions (VII).

VI

Bragd, P. L. et al. Topics in Catalysis 2004, 27, (1-4), 49

:В

VII

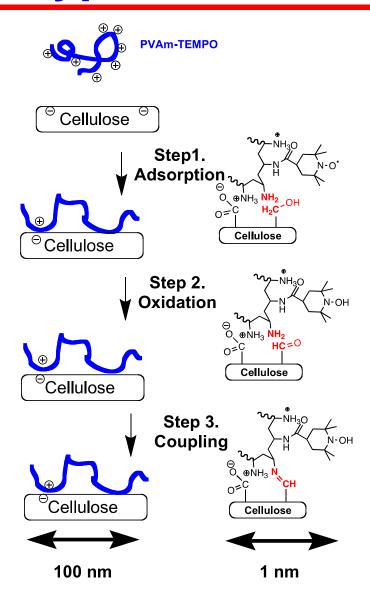
Practical Issues with TEMPO Applications in Papermaking

- ♦ 90 g water
- ◆ 10 g od fiber
- ◆ 0.025 g TEMPO (0.25% on o.d. pulp)
- ♦ 0.25 g NaBr (2.5% on o.d. pulp)
- ◆ 0.45 g NaCIO (4.5% on o.d. pulp)
- Adding base to maintain pH at 10

- High chemical concentrations
- ◆ High pH
- Chemicals in white water

Cellulose Oxidation for Increased Wet Strength -Relevant Literature

- ◆ Luner et al. Tappi 1967, 50 (1), 3
 - Aldehydes, not carboxyls give wet strength
 - Paper must be dried for strength to develop
- Kitaoka, T.; Isogai, A.; Onabe Nordic Pulp & Paper Res. J. 1999, 14 (4),
 279
 - Higher wet strength with PAE
- ♦ Jaschinski, et al. Pat. US 6,987,181 B2, 2006
 - SCA patent -TEMPO oxidation to improve wet strength
- ♦ Saito, T.; Isogai, A., *Ind. Eng. Chem. Res. 2007, 46 (3), 773*
 - Good series of TEMPO papers
 - Aldehydes on pulp enhance many polymers
- Many other papers and patents involving water-soluble polymers bearing aldehyde groups.


Summary - 2008

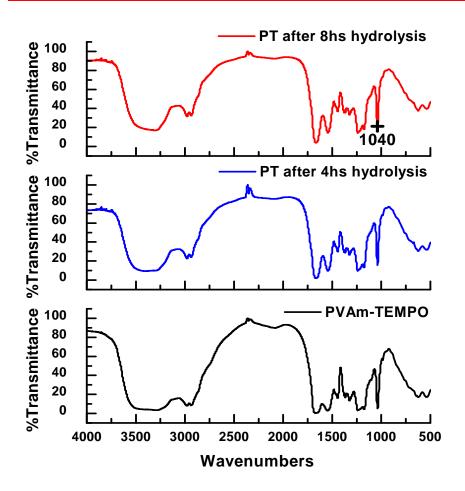
- We learned a lot about PVAm adhesion to wet cellulose
 - Molecular weight, pH
 - Hydrophobic substitution
 - Phenylboronic acid substitution (wet web strength)
 - Microgels vs linear polymer
- ◆ Scientifically interesting but some problems with technological application
 - TEMPO expensive, toxic (Haseloff et al 1997)
 - Easy to produce carboxyls instead of aldehydes

Hypothesis

- **◆ TEMPO** must be in physical contact with cellulose
- ◆ For covalent attachment of PVAm to cellulose we need only a few oxidized sites.
- ◆ PVAm with grafted TEMPO will oxidize the cellulose and then form covalent bonds between the amines and the cellulose aldehydes.

Hypothesis -Continued

◆ Potential advantages


- Much less TEMPO
- Amines react with aldehydes before further oxidation
- Only exterior fibers or other porous substrates are oxidized
- Immobilized TEMPO should be less toxic and not present in water.

Preparation of PVAm-TEMPO

Amidation reaction catalyzed by EDC/Sulfo-NHS

- such high contents are unnecessary
- measured by conductometric titration
- activity confirmed by soluble molecule oxidation

Stability of PVAm-TEMPO under oxidation conditions

Peak ratio to quantify TEMPO content:

1240 cm⁻¹: C-N stretching vibration, from PVAm

1040 cm⁻¹: N-O vibration, from TEMPO-COOH

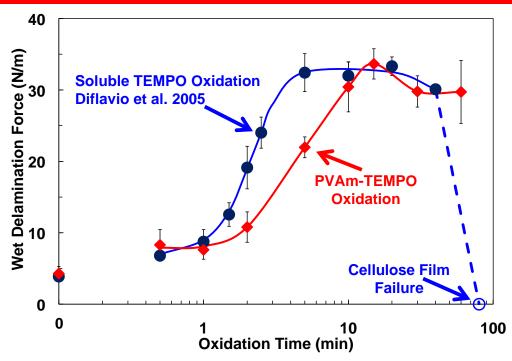
Samples	Peak Ratio (1040 /1240 cm ⁻¹)		
Original PT	0.874		
PT, after 4hs' hydrolysis	0.809		
PT, after 8hs' hydrolysis	0.809		

Direct coating method

Experimental procedure

PVAm-TEMPO oxidation in aqueous solution, pH 10.3 2h

Oxidized films were rinsed with water and laminated with additional PVAm, then pressed


Laminated films were conditioned and peel force was tested

Wet adhesion of treated cellulose films

Trials	NaBr (mg/L)	PVAm- TEMPO (mg/L)	NaClO (mmol/g cellulose)	Coated PVAm (mg/m²)	Average peel force (N/m)
1	0	0	0	6.25	1.9
2	82.5	0	1.8	6.25	2.9
3	82.5	66.7	1.8	6.25	25.2

PVAm-TEMPO works well as a catalyst!

Influence of Oxidation Time

Jieyi (Jerry) Liu

- ◆ Soluble TEMPO diffuses into film interior and weakens whole film
- Grafted TEMPO gives similar kinetics without oxidizing film interior pores

Comparing Soluble to Tethered TEMPO

◆ Assume:

- Adsorbed density PVAm-g-TEMPO 1mg/m2
- Adsorbed layer thickness 5 nm
- TEMPO conc. On cellulose surface 5 M/L
- ◆ Tethered TEMPO concentration 1000> Saito and Isogai solution concentration.
- ◆ Much scope to lower TEMPO grafting and optimization.

Conclusions

- PVAm-TEMPO does oxidize cellulose
- ◆ Many potential advantages
 - Less TEMPO
 - No soluble TEMPO effluent
 - No fiber strength loss (exterior oxidation only)
- ♦ Scope for optimization
- Ultimate goal self-catalyzing adhesive with no other chemical additions.

See Pelton, R.; Ren, P. R.; Liu, J.; Mijolovic, D., Polyvinylamine-graft-tempo adsorbs onto, oxidizes and covalently bonds to wet cellulose. *Biomacromolecules* 2011, on-line. http://dx.doi.org/10.1021/bm200101b

Bioactivepaper.com
Papersci.mcmaster.ca